A Dynamical Systems Simulation of Myxobacteria Life-Cycle Regulated by Dynamic Energy Budget (DEB) Theory

Björn Birnir

Department of Mathematics and Center for Complex and Nonlinear Science University of California, Santa Barbara

MBI Ohio State Nov. 4, 2008

Björn Birnir A Dynamical Systems Simulation of Myxobacteria Life-Cycle Reg

ヘロト 人間 ト ヘヨト ヘヨト

Graduate Student and Collaborators

The graduate student who is doing all the simulations is

Melisa Hendrata

• We also collaborate with an experimental group at UCLA,

Wenyuan Shi

and his postodoc Renata Lux

Björn Birnir

A Dynamical Systems Simulation of Myxobacteria Life-Cycle Reg

Outline

Biological Background Lattice vs. Off-Lattice Model

Cell Characteristics

 \bullet Social behavior \rightarrow complex multicellular organization

- Motility engines:
 - A(adventurous)-motility: slime secretion
 - S(social)-motility: pili

・ロト ・ 理 ト ・ ヨ ト ・

E DQC

Biological Background Lattice vs. Off-Lattice Model

Cell Characteristics

- Social behavior \rightarrow complex multicellular organization
- Motility engines:
 - A(adventurous)-motility: slime secretion
 - S(social)-motility: pili

ヘロト ヘアト ヘビト ヘビト

э.

Biological Background Lattice vs. Off-Lattice Model

Cell Characteristics

- Social behavior → complex multicellular organization
- Motility engines:
 - A(adventurous)-motility: slime secretion
 - S(social)-motility: pili

Biological Background Lattice vs. Off-Lattice Model

Myxobacteria strains:

- Motile: A+S+ (wild-type), A+S-, A-S+
- Nonmotile: A-S-

イロト 不得 とくほ とくほとう

Biological Background Lattice vs. Off-Lattice Model

Myxobacteria life cycle

Biological Background Lattice vs. Off-Lattice Model

Fruiting body formation

- non-chemotaxis
- controlled by C-signal morphogen
- direct cell-cell local interaction

(Ref: S. Kim and D. Kaiser, 1990)

ヘロア 人間 アメヨア 人口 ア

Biological Background Lattice vs. Off-Lattice Model

Lattice vs. Off-Lattice model

LGCA (Lattice Gas Cellular Automaton) model

- uses hexagonal lattice
- geometric constraint

Off-Lattice model

free movement in space

reduce geometric constraint

(Ref: Y. Wu et al., 2006)

ヘロン 人間 とくほ とくほ とう

Biological Background Lattice vs. Off-Lattice Model

Lattice vs. Off-Lattice model

• LGCA (Lattice Gas Cellular Automaton) model

- uses hexagonal lattice
- geometric constraint
- Off-Lattice model
 - free movement in space
 - reduce geometric constraint

(Ref: Y. Wu et al., 2006)

Modeling Cell Characteristics Modeling Cell Motility

Cell Representation

- string of 4 to 7 nodes, connected by segment
- cell orientation
- oplarity reversal

Modeling Cell Characteristics Modeling Cell Motility

Cell Division

- cell waits until it has fully grown before dividing
- cell divides in the middle
- length of new cells is half of original cell

Björn Birnir A Dynamical Systems Simulation of Myxobacteria Life-Cycle Reg

Modeling Cell Characteristics Modeling Cell Motility

General Assumptions

- cell movement is directed by anterior node
- cell moves with a fixed step length
- collision handling mechanism: align or stop

イロト イポト イヨト イヨト

æ

Modeling Cell Characteristics Modeling Cell Motility

Modeling A-motility

- searching circle
- turn at acute angle to follow slime trail
- need to consider cell density

< 🗇 🕨

→ E → < E →</p>

Modeling Cell Characteristics Modeling Cell Motility

Modeling S-motility

- searching area around the anterior node
- cell moves towards the most crowded quadrant

A and S-motility Modeling C-signaling Simulating C-signaling

Björn Birnir A Dynamical Systems Simulation of Myxobacteria Life-Cycle Reg

ヘロト 人間 とくほとくほとう

A-S+

A and S-motility Modeling C-signaling Simulating C-signaling

Björn Birnir A Dynamical Systems Simulation of Myxobacteria Life-Cycle Reg

ヘロト 人間 とくほとくほとう

A+S-

A and S-motility Modeling C-signaling Simulating C-signaling

Björn Birnir A Dynamical Systems Simulation of Myxobacteria Life-Cycle Reg

ヘロト 人間 とくほとくほとう

A and S-motility Modeling C-signaling Simulating C-signaling

Comparison with Experiments

ヘロト ヘアト ヘビト ヘビ

A and S-motility Modeling C-signaling Simulating C-signaling

Modeling C-signaling

- C-signaling occurs when two cells are in end-to-end contact
- cell turns to direction that increases the level of C-signaling
- C-signaling triggers locking between cells
- N is number of C-signal molecules on the cell surface

$$\frac{dN}{dt} = \frac{cN(N_{\rm max} - N)}{N_{\rm max}}$$
(1)

ヘロト 人間 ト ヘヨト ヘヨト

э.

A and S-motility Modeling C-signaling Simulating C-signaling

C-signaling

Björn Birnir A Dynamical Systems Simulation of Myxobacteria Life-Cycle Reg

<ロト <回 > < 注 > < 注 > 、

E DQC

Dynamic Energy Budget

- describes how cells acquire and utilize energy for maintenance, growth and division
- uses κ-rule: a fixed fraction κ of energy flowing out of reserves is used for maintenance and growth, and the rest for reproduction
- trigger mechanism from the swarming stage to the streaming stage and the stages of fruiting body formation

(Ref: S. Kooijman, 2000)

DEB Model

$$\frac{dL}{dt} = \frac{\dot{\nu}}{3} \frac{(E/E_m) - (L/L_m)}{g + (E/E_m)}$$
(2)
$$\frac{dE}{dt} = \frac{A_m}{L} \left(f - \frac{E}{E_m} \right)$$
(3)

where

$$f = \frac{X}{K + X}, \quad \dot{\nu} = \frac{A_m}{E_m}, \quad g = \frac{G}{\kappa E_m}$$
(4)

E = stored energy density, L = length, X = food density,

 $\kappa =$ fraction of utilized energy spent on maintenance and growth,

K = saturation coefficient, G = energy costs for a unit increase in size,

 $E_m = \max$ storage energy, $L_m = \max$ length, $A_m = \max$ assimilation rate

(Ref: R. Nisbet et al. and S. Kooijman, 2000)

・ロト ・ 理 ト ・ ヨ ト ・

E DQC

The Internal Energy

- The internal energy *E* in the DEB theory models the level of Adenosine Triphosphate (ATP)
- ATP is a complex molecule that is considered as primary energy currency in all organisms
- ATP powers all activities of the cell, such as cell growth, locomotion, DNA replication and cell division (binary fission)
- ATP is the carrier and regulation-storage unit of energy

Non-dimensionalization

Let

$$L^* = \frac{L}{L_m}, \quad E^* = \frac{E}{E_m} \tag{5}$$

Then

$$\frac{dL^*}{dt} = \frac{\dot{\nu}}{3L_m} \frac{(E^* - L^*)}{(g + E^*)}$$

$$\frac{dE^*}{dt} = \frac{\dot{\nu}}{L^*L_m} \left(f - E^*\right)$$
(6)
(7)

ヘロト 人間 とくほとく ほとう

Experimental data:

Doubling time = 3 hours (\sim 900 time steps)

Cell length = 2-12 μ m

Estimated parameters: $f = 0.95, \dot{\nu} = 0.25, g = 0.5$

イロト 不得 とくほと くほとう

∃ <2 <</p>

Fruiting Body Formation

Björn Birnir A Dynamical Systems Simulation of Myxobacteria Life-Cycle Reg

<ロト <回 > < 注 > < 注 > 、

Summary

- A interacting particle model of myxobacteria simulates the different swarming patterns of three strains of bacteria
- A dynamic energy budget (DEB) model controls the reproduction (splitting) of the bacteria and triggers the transition from swarming into the starvation phase
- In the starvation phase DEB, with the addition of C-signaling, controls the different stages of the fruiting body formations culminating in sporulation

Summary

- A interacting particle model of myxobacteria simulates the different swarming patterns of three strains of bacteria
- A dynamic energy budget (DEB) model controls the reproduction (splitting) of the bacteria and triggers the transition from swarming into the starvation phase
- In the starvation phase DEB, with the addition of C-signaling, controls the different stages of the fruiting body formations culminating in sporulation

Summary

- A interacting particle model of myxobacteria simulates the different swarming patterns of three strains of bacteria
- A dynamic energy budget (DEB) model controls the reproduction (splitting) of the bacteria and triggers the transition from swarming into the starvation phase
- In the starvation phase DEB, with the addition of C-signaling, controls the different stages of the fruiting body formations culminating in sporulation

Summary

- A interacting particle model of myxobacteria simulates the different swarming patterns of three strains of bacteria
- A dynamic energy budget (DEB) model controls the reproduction (splitting) of the bacteria and triggers the transition from swarming into the starvation phase
- In the starvation phase DEB, with the addition of C-signaling, controls the different stages of the fruiting body formations culminating in sporulation

・ロット (雪) () () () ()

The Scaling: Superindividual → Individual

• The interaction particle system can be written as

$$\Delta x = v \Delta t + \epsilon^* dB_t \tag{8}$$

 Hence, the following scaling relationship hold between various parameters:

$$\Delta t \sim \Delta x \sim \epsilon^* \sim r_s \sim r_p \tag{9}$$

• We want to find the scaling parameter α . The density in a computational square of size Δx is $\rho = \frac{n}{\Delta x^2}$.

ヘロト 人間 とくほとくほとう

The Number of Superindividuals

• The total number of superindividuals is $n_T = \frac{nA}{\Delta x^2}$ and the number of cells each superindividual represents is

$$\beta = \frac{N}{n_T} = \frac{N\Delta x^2}{nA} \tag{10}$$

Thus the number of particles in a computational square is

$$n = \frac{N\Delta x^2}{\beta A} \tag{11}$$

Fixed number of particles *n* in a square

- Let Δx₀ and β₀ denote the spatial resolution and the number of cells in represented by a superindividual (or individual if β₀ = 1) in a reference simulation, respectively.
- Since *n* is constant, (11) gives us the relationship

$$\frac{N\Delta x^2}{\beta A} = \frac{N\Delta x_0^2}{\beta_0 A},$$

which implies $\Delta x = \sqrt{\beta/\beta_0} \Delta x_0$

The scaling factor is

$$\alpha = \sqrt{\beta/\beta_0}$$

The Order Parameter

Björn Birnir A Dynamical Systems Simulation of Myxobacteria Life-Cycle Reg

ъ

æ

Björn Birnir A Dynamical Systems Simulation of Myxobacteria Life-Cycle Reg

・ロト ・聞ト ・ヨト ・ヨト

Björn Birnir A Dynamical Systems Simulation of Myxobacteria Life-Cycle Reg

・ロト ・聞ト ・ヨト ・ヨト

Björn Birnir A Dynamical Systems Simulation of Myxobacteria Life-Cycle Reg

・ロト ・聞ト ・ヨト ・ヨト