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The Deterministic Navier-Stokes Equations

A general incompressible fluid flow satisfies the
Navier-Stokes Equation

ut + u ·∇u = ν∆u−∇p
u(x ,0) = u0(x)

with the incompressibility condition

∇ ·u = 0,

Using the Reynolds decomposition U + u we get the
equation for the large scales in the flow

Ut + U ·∇U = ν∆U + ∇p + U ·∇U− (U + u) ·∇(U + u)

U(x ,0) = U0(x) eddy viscosity

The turbulence is quantified by the dimensionless
Reynolds number R = UL

ν
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Stochastic Navier-Stokes with Turbulent Noise

The small scales satisfy a stochastic Naiver-Stokes
equation

du = (ν∆u−u ·∇u + ∇p)dt

+ ∑
k 6=0

c
1
2
k dbk

t ek (x) +
M

∑
k 6=0

dk |k |1/3dt ek (x)

+ u(
M

∑
k 6=0

∫
R

hk N̄k (dt ,dz))

u(x ,0) = u0(x)

Each Fourier component ek comes with its own
Brownian motion bk

t and deterministic bound |k |1/3dt
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The Stochastic Vorticity Equation

Taking the curl of the stochastic Navier-Stokes equation and
using the vector identity

∇× (u ·∇u) = u ·∇ω−ω ·∇u + (∇ ·u)ω = u ·∇ω−ω ·∇u,

and incompressibility, we get the vorticity equation

ωt + u ·∇ω = ν∆ω + ω ·∇u + 2πi ∑
k 6=0

k ×c
1
2
k dbk

t ek (x)

+ 2πi ∑
k 6=0

k ×dk |k |1/3dtek (x) + ω

m

∑
k 6=0

∫
R

hk N̄k (dt ,dz),

ω(x ,0) = ω0(x)
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Solution of the Stochastic Vorticity Equation

We solve (1) using the Feynmann-Kac formula, and
Cameron-Martin (or Girsanov’s Theorem)
The solution is

ω = eKte−
∫ t

0 ∇u dr e
∫ t

0 dqMtω
0 +

∑
k 6=0

∫ t

0
eK (t−s)e−

∫ t
0 ∇u dr e

∫ t
s dqMt−s

× (k ×c1/2
k dβ

k
s + k ×dk µkds)ek (x)

K is the heat operator

K = ν∆
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Cameron-Martin and Feynmann-Kac

Mt is the Martingale

Mt = exp{−
∫ t

0
u(Bs,s) ·dBs−

1
2

∫ t

0
|u(Bs,s)|2ds}

Using Mt as an integrating factor eliminates the inertial
terms from the equation (1)
The Feynmann-Kac formula gives the exponential of a
sum of terms of the form (log-Poissonian)

e
∫ t

0
∫
R ln(1+hk )Nk (dt ,dz)−

∫ t
0
∫
R hk mk (dt ,dz) = eNk

t lnβ+γ ln |k |= |k |γβNk
t

by a computation similar to the one that produces the
geometric Lévy process, see She and Leveque [8]
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Independence of Velocity

The velocity at (x , t) is independent of the vorticity at
the same point
The velocity only depends on the whole vorticity field
through the Biot-Savart law

u(x , t) =− 1
4π

∫
R3

(x −y)×ω(y , t)
|x−y |3

dy , (1)

We have used the periodicity condition to extend the
vorticity field to the whole of R3

The independence of u(x , t) of ω(x , t) is seen by setting
ω(x , t) = 0, since {x} is a set of measure zero the
integral in (1) is unchanged



Turbulence

Birnir

The
Deterministic
versus the
Stochastic
Equation

The Form of
the Noise

The
Kolmogorov-
Hopf Equation
and the
Invariant
Measure

The
Normalized
Inverse
Gaussian
(NIG)
distributions

Comparison
with
Simulations
and
Experiments.

Outline

1 The Deterministic versus the Stochastic Equation

2 The Form of the Noise

3 The Kolmogorov-Hopf Equation and the Invariant
Measure

4 The Normalized Inverse Gaussian (NIG) distributions

5 Comparison with Simulations and Experiments.



Turbulence

Birnir

The
Deterministic
versus the
Stochastic
Equation

The Form of
the Noise

The
Kolmogorov-
Hopf Equation
and the
Invariant
Measure

The
Normalized
Inverse
Gaussian
(NIG)
distributions

Comparison
with
Simulations
and
Experiments.

The Invariant Measure and the Probability
Density Functions (PDF)

The statistical theory of the vorticity dynamics is
completely determined by the invariant measure, that
lives on the infinite-dimensional function space were
the vorticity vector resides
Hopf [4] write down a functional differential equation for
the characteristic function of the invariant measure
The quantity that can be compared directly to
experiments is the PDF

E(δju) = E([u(x + s, ·)−u(x , ·)] · r) =
∫

∞

∞

xfj(x)dx ,

j = 1, if r = ŝ is the longitudinal direction, and j = 2,
r = t̂ , t ⊥ s is a transversal direction
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The Kolmogorov-Hopf Equation

The stochastic vorticity equation is an infinite-dimensional
Ito process

d(Ptω) = (KPtω + D ∑
k 6=0
|k |1/3Ptek )dt + C1/2

∑
k∈Z3

Ptdbk
t ek

(2)
Pt = e−

∫ t
0 ∇u dr

∏
k
|k |2/3(2/3)Nk

t Mt

The Kolmogorov-Hopf equation for the Ito processes (2) is

∂φ

∂t
=

1
2

tr[PtCP∗t ∆φ] + tr[Pt D̄∇φ]+ < K (ω)Pt ,∇φ > (3)

where D̄ = (|k |1/3Dk ) and φ(ω) is a bounded function of ω
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The Invariant Measure of the Stochastic
Vorticity Equation

Variance and drift

Qt =
∫ t

0
eK (s)PsCP∗seK ∗(s)ds, Et =

∫ t

0
eK (s)PsD̄ds (4)

The solution of the Kolmogorov-Hopf equation (3) is

Rtφ(ω) =
∫

H
φ(eKtPtω + EI + y)N(0,Qt ) ∗PPt (dy)

Theorem

The invariant measure of the stochastic vorticity equation on
Hc = L2(T3) is, µ(dx) =

e<Q−1/2EI, Q−1/2x>− 1
2 |Q

−1/2EI|2N(0,Q)(dx)∑
k

δk ,l

∞

∑
j=0

pj
ml δ(Nl−j)

where Q = Q∞, E = E∞.
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The trouble with Vorticity

Vorticity may not be continuous although the velocity is
This is the reason why we use the Hilbert space L2(T3)

We expect the vorticity to lack 2/3 of a derivative
One may have to normalize the moments in order to
get a finite answer
Nevertheless with proper normalization we can still
project onto well defined PDFs
The effect of the curl vanishes in the normalization
limk→∞(Q−1/2E)k = lim |k ×dk ||k |1/3/|k ×ck ||k |1/3→ c̄
Therefore we still get the same stationary equation (6)
for the PDF as for the velocity
Consequently, the four parameter NIG are also the
PDFs for the turbulent vorticity and its moments
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The differential equation for the PDF

We can rewrite the Kolmogorov-Hopf equation on the form

∂φ

∂t
=

1
2

tr[Qt ∆φ] + tr[Et∇φ] (5)

Then by scaling Q−1/2E and taking the trace, we get

1
2

φrr +
1 + |c|

r
φr =

1
2

φ (6)

This is the stationary equation satisfied by the PDF
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The Probability Density Function (PDF)

Lemma

The PDF is a Normalized Inverse Gaussian distribution NIG
of Barndorff-Nilsen [1]:

f (xj) =
(δ/γ)√

2πK1(δγ)

K1

(
α

√
δ2 + (xj −µ)2

)
eβ(x−µ)(√

δ2 + (xj −µ)2/α

) (7)

where K1 is modified Bessel’s function of the second kind,
γ =

√
α2−β2.

f (x)∼ (δ/γ)

2πK1(δγ)

Γ(1)2eβµ

(δ2 + (x −µ)2)
, for x << 1

f (x)∼ (δ/γ)

2πK1(δγ)

eβ(x−µ)e−αx

x3/2 , for x >> 1
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Inserting a Gaussian

The probability density function (PDF) of the
components of the velocity increments is a nomalized
inverse Gaussian distribution, see Barndorff-Nilsen [1]
Letting α,δ→ ∞, in the formulas for fj(x) below, in such
a way that δ/α→ σ, we get that

fj →
e−

(x−µ)2
2σ

√
2πσ

eβ(x−µ).

The exponential tails of the PDF are caused by
occasional sharp velocity gradients (rounded of shocks)
The cusp at the origin is caused by the random and
gentile fluid motion in the center of the ramps leading
up to the sharp velocity gradients, see Kraichnan [6]
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Existence and Uniqueness of the Invariant
Measure

We now compare the above PDFs with the PDFs found
in simulations and experiments.
The direct Navier-Stokes (DNS) simulations were
provided by Michael Wilczek from his Ph.D. thesis, see
[9].
The experimental results are from Eberhard
Bodenschatz experimental group in Göttingen.
We thank both for the permission to use these results
to compare with the theoretically computed PDFs.
A special case of the hyperbolic distribution, the NIG
distribution, was used by Barndorff-Nilsen, Blaesild and
Schmiegel [2] to obtain fits to the PDFs for three
different experimental data sets.
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The PDF from simulations and fits for the
longitudinal direction

Figure: The PDF from simulations and fits for the longitudinal
direction.
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The log of the PDF from simulations and fits for
the longitudinal direction

Figure: The log of the PDF from simulations and fits for the
longitudinal direction, compare Fig. 4.5 in [9].
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The PDF from simulations and fits for the
transversal direction

Figure: The log of the PDF from simulations and fits for the a
transversal direction, compare Fig. 4.6 in [9].
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The PDFs from experiments and fits

Figure: The PDFs from experiments and fits.
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The log of the PDFs from experiments and fits

Figure: The log of the PDFs from experiments and fits.
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Conclusions

Given the stochastic Navier-Stokes we can find an
equation for the stochastic vorticity
This equation is linear in ω and can be solved explicitly
in terms of u
This allows us to view vorticity as an infinite
dimensional Ito-Lévy process
We can find the Kolmogorov-Hopf equation for this
process and solve for the invariant measure
The invariant measure can be projected to the PDF that
is a Normalized Inverse Gaussian (NIG)
The comparison with simulated and experimental PDF
is excellent
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The Artist by the Water’s Edge
Leonardo da Vinci Observing Turbulence
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Computation of the structure functions

Lemma (The Kolmogorov-Obukov scaling)

The scaling of the structure functions is

Sp ∼ Cp|x −y |ζp ,

where
ζp =

p
3

+ τp =
p
9

+ 2(1− (2/3)p/3)

p
3 being the Kolmogorov scaling and τp the intermittency
corrections. The scaling of the structure functions is
consistent with Kolmogorov’s 4/5 law,

S3 =−4
5

ε|x −y |

to leading order, were ε = dE
dt is the energy dissipation
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The first few structure functions

S1(x ,y , t) =
2
C ∑

k∈Z3\{0}
dk

(1−e−λk t )

|k |ζ1
sin(πk · (x−y)).

∑k∈Z3\{0}dk < ∞, and for |x−y | small,

S1(x ,y ,∞)∼ 2
C ∑

k∈Z3\{0}
dk |x−y |ζ1 ,

where ζ1 = 1/3 + τ1 ≈ 0.37. Similarly

S2(x ,y ,∞)∼ 2πζ2

C ∑
k∈Z3

[ck +
2d2

k
C

]|x −y |ζ2 ,

when |x−y | is small, where ζ2 = 2/3 + τ2 ≈ 0.696.
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The higher order structure functions

All the structure functions are computed in a similar manner.
If p = 2n + 1 is odd,

Sp =
2p

Cp ∑
k∈Z3

dk
p (1−e−2λk t )p

|k |ζp
sinn(πk · (x −y))

to leading order in the lag variable |x −y |. If p = 2n is even,
Sp is

∑
k∈Z3

[
2n

Cn cn
k

(1−e−2λk t )n

|k |ζp
+

2p

Cp dk
p (1−e−λk t )p

|k |ζp
]sinp(πk ·(x−y)),

to leading order in |x −y |.
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The Kolmogorov-Obukov scaling hypothesis

The Kolmogorov-Obukov scaling with the intermittency
corrections τp, is

Sn(l) = Cplζp , ζp =
p
3

+ τp =
p
9

+ 2(1− (2/3)p/3) (8)

where l is the lag variable l = |x −y |.
The coefficients Cp are not universal but depend on the
cks and dks that in turn depend on the large eddies in
the turbulent flow
Cp = 2pπ

ζp

Cp ∑k∈Z3\{0}dk
p or Cp = 2nπ

ζp

Cn ∑k∈Z3 [cn
k + 2n

Cn dk
p]
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Kolmogorov’s refined scaling hypothesis

In [5, 7] Kolmogorov and Obukhov presented their
refined similarity hypothesis

Sp = C ′p < ε̃
p > lp/3

where l is the lag variable and ε̃ is an averaged energy
dissipation rate
It can be shown, see [3], that by defining ε̃

appropriately, this gives

Sp = C ′p < ε̃
p > lp/3 = Cplζp

where the coefficients C ′p now are universal

Sp(t ,T , l) = Cplζp + Dp(t)T γp , γp =
p
6

+ 3(1− (2/3)p/3)
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Figure: The PDF for the first structure function, from experiments
and fits.
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Figure: The PDF for the third structure function, from experiments
and fits.
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Computing the PDF from the characteristic
function

Taking the characteristic functions of the measure of
the stochastic processes, we get

f̂ (k)∼ k1−ζ1e−δk

Translating this function and taking the inverse Fourier
transform gives

f (x)∼ e−d |x |e−bx

(x− iδ)2−ζ1
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